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Anderson-Bjorck for Linear Sequences* 

By Richard F. King 

Abstract. The proposed one-point method for finding the limit of a slowly converging linear 
sequence features an Anderson-Bj6rck extrapolation step that had previously been applied to 
the Regula Falsi problem. Convergence is of order 1.839 as compared to v5 for the 
well-known Aitken-Steffensen 82-process, and to 1.618 for another one-point extrapolation 
procedure of King. There are examples for computing a polynomial's mutiple root with 
Newton's method and for finding a fixed point of a nonlinear function. 

1. Introduction. Let us suppose that we have a stationary, one-point generating 
function 4 for a sequence xO, xl,..., but that convergence to the limit a is only 
linear. That is, starting from a given xo, 

(1.1) X~~~~n+1 
- 

(Xn) -On, n=O12.. 

and the error En = Xn-a satisfies 

(1.2) E =Ke +L 2 + Me3 + NE4 +* 

with 0 <I KI < 1. The error equation (1.2) for 4 we get by expanding k(xn) in a 
Taylor series about a, noting that +(a) a a, and setting K 4/'(a), L = 0"(a)/2!, 
M =4/'"'(a)/3!, and N = 4Vv(a)/4!. The function 4 is called stationary because it is 
independent of n. 

Several extrapolation methods for improving the convergence rate are known. We 
shall review two such methods, and then develop an even faster extrapolation 
procedure-one based on the Anderson-Bjorck step introduced and used in [2] for 
finding a bracketed simple root of a nonlinear equation. 

Each of the extrapolation methods may be derived by applying the secant method 
to a suitable ?-related function having a simple zero at a. Since the secant method is 
hyperlinear for a simple a, so will the resulting extrapolation methods be hyperlin- 
ear. 

In the classical 82-process, developed by Aitken [1] and applied to 4 by Steffensen 
[10] (see [4, pp. 135-139] or [9, Appendix E]), the related function is g = x - . The 
point a is a simple root for g because g(a) = a - (a) = 0, and g'(a) 1 -+'(a) 
= 1- K# 0. Each step of the 8Y-process goes as follows: from xn take two 
linear-error substeps, x" + l (X) and xn+2 = O(xn+1). The extrapolation substep 
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then consists of one application of the secant method 

(1.3) Xn+2 X11+ I (Xn Xn+)g - 

to g, wherein gn g(xn) = Xn - Xn?+ and gn+1 l (Xn+i) = Xn+ -X,?+2. Note 
that the extrapolation itself does not require any evaluations of 4. The corresponding 
asymptotic error equation 

(1.4) n n-n+2 - + E I - K )En 
n n+1 n 2 

for error En?2 xn+2- a comes out of (1.2) and (1.3). Next, point xn?2 becomes a 
new xn for two more linear-error substeps and another extrapolation, and so on. 
From (1.4), the whole 82-process has second-order convergence; its efficiency in the 
sense of Traub [1 1, p. 263] is F2, because k must be evaluated twice per step. Again 
following Traub [1 1, p. 8], the 8 2-process is a two-point method without memory. 

But we can attain a higher convergence rate merely by retaining, at each step, 
information held over from the previous step. This idea is incorporated (with a 
change of notation) into the one-point extrapolation method with memory described 
in [7], to wit: define qn = 4x0), and get started from x() by taking xl = 40. For each 
and every subsequent step, apply a secant-method step to the related function 
g x - . Thus the method is 

(1.5) Xn+2 = Xn+- (Xn - Xn+ ) _nI 

gn gn +I 

starting at go =g(xo) = x,,- ,) and g =g(x,) x x-. Since ultimately 

I En+ I l<l En I, the error equation for the one-point method of [7] turns out to be the 
following (from (1.5) and the error expression (1.2) for 4): 

(1.6) (?-LK ) 

That is to say, the error equation is of the same form as that of the usual secant 
method for a simple root. Thus the method has a convergence rate of (1 + r )/2? 
1.618. Furthermore the scheme also has an efficiency of 1.618 because only one new 
4-value needs to be calculated each step. This compares with 1.414 for the 82-pro- 
cess. 

In passing, we mention several other procedures that,while not as efficient as the 
method to be developed,are nevertheless hyperlinear: the extrapolation methods of 
Van de Vel [12] (efficiency 1.414) and of King [6] (1.587), in which the linear error 
term for 4 is effectively subtracted out; the nonextrapolation methods of Esser [3] 
(1.587) and of King [5] (1.618), in which O is replaced by a hyperlinear generating 
function using divided differences and analogous to x - (x - )/(1- ). 

But now, on to the proposed extrapolation procedure. 

2. A New Iteration Procedure Based on the Anderson-Bjorck Extrapolation Step. 
The idea in an Anderson-Bjorck step is (i) to fit a parabola gn+2 to three points 

(xn, gn) (Xn+1, gn+l), (xn+2, gn+2) of a function g whose zero is sought, (ii) to 
compute the derivative g'+2 to g+2 at Xn+2, and then (iii) to take a Newton-like 
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step from xn2 to a new n+3 using gn+2 and gn+2 

(2.1) gn +2 
?n 2 

It turns out that g,l+2 can be written (and computed) in terms of divided differences 
of gas 

(2.2) g?+2 = g[Xn+2, Xn+] + g[Xn+2, Xn] - g[xn, xn1+?], 

where g[x1, Xk] = (gk - g)/(xk - xj). 
In our procedure we take g to be the ?-related function g = x - . Starting from 

a given xo, we (1) compute O(x0) -0 and set go = - 4o-. Now (2) take xl - 1 0, 
compute O(x1) (P, and set g1 = xl-4i. At this point we could have chosen to 
repeat the cycle, i.e., (3*) take X2 = (PI compute k2, and set g2 = x2- 2. Finally 
(4) find x3 and succeeding points by means of the Anderson-Bjorck step (2.1), and at 
each point set the new gn+3 - On+3 

But after step (2) we already have enough information to apply the 8 2-process to 
points PO 0 (xo, go) and PI = (xl, gl). This we choose to do because it accelerates 
the convergence process. Consequently, instead of (3*) in our procedure we sub- 
stitute the following: Step (3) take x2 to be the 82-extrapolant of (xo, go) and 
(xl, gl), compute ?(X2) -02 and set g2 - 0P2- It is easy to show that we can 
accomplish the programming of Step (3) quite simply by setting (in sequence) 
(x2, g2) = (xl gl), (xl, gl) (xo, go), (xo, go) = (2x, - x2,2g, - g2), and then 
using the general step (2.1). (In this case the parabola g2 degenerates into the straight 
line through PO and PI.) 

We know that g has a simple root at a (because g(a) = a- p(a) 0 O and 
g'(a) =I - '(a) =I - K 0). Furthermore, g"(a) = -2L, g"'(a) = -6M, and 
giv(a) = -24N. It can then readily be shown from (1.2), (2.1), and (2.2) that 

M L 2 N 2 
(2.3) En+3 l EnEn+lEn+2 - E+2 + l _ Kenen+lEn+2 + 

Asymptotically the second and third terms are negligible, so the error equation for 
our procedure is 

(2.4) En+3 EnEn+IEn+2- 

Both the rate of convergence and the efficiency of the method, therefore, are 1.839 
(see Muller [8, p. 212] for a derivation of convergence rate for a method with an error 
equation of the form (2.4)). In the terminology of Traub, the procedure may be 
classified as a one-point method with memory. 

After starting, of course, we need not compute later terms of the original sequence 
(1.1). Instead, g is computed from 4 as applied to successively more and more 
accurate estimates of the root a, and g converges rapidly to zero. 

We can get an estimate for the coefficient K in the linear error term of (1.2) by- 
forming the ratio 

(2.5) K -= -n+3 n+2 
xn+3 - Xn+2 
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To determine Kn+4 in terms of ?n+2 and pn+3, apply (1.2) to kn+3 - On+22 thus 
obtaining 

(2.6) Kn K4 - ?n?2) + - -n K+ L(Pn+2 + ?n+3). 
En+3 

- 
Cn+2 

The estimate Kn+4 may be computed and displayed each step along with the current 
iterate xn+3. 

In all three of the methods outlined, the slowly converging generating function 4 is 
replaced by a function g x - with a simple zero at a. It should be emphasized 
that with such a transformation most of the many well-known hyperlinear methods 
for solving g(x) = 0 may be utilized to find a. 

3. Examples. All three of the examples are taken from [7], with computations done 
in quadruple precision on an IBM 370. 

a. The first two examples are for Newton's method, 

(3.1) x xf) - __ 

applied to a nonlinear function f with a multiple root at a of multiplicity m # 1. 
Tables 1 and 2 are for functions f = (x - 1)2 tan(?Tx/4) and f = xsin([x -14), 

respectively. For the proposed method, the actual error c,, = x,a- a and the final 
estimate of En from the first three error terms (2.3) are given. We can approximate 
the multiplicity by mn 1/(1 - Kn) because we know Kn from (2.5) and because 
(see [6]) m = 1/(1 - K). Both Kn and mn are given in the tables. Results for the two 
methods reviewed in Section 1 -the 82-process and the scheme of [7]-are also 
included for comparison. Extrapolation substeps have a P (for prime) following the 
step number n in the first column. 

TABLE I 

f a m K l M N 

(x-1)2tan(7x/4) 1 2 1/2 7i/8 -IT2/32 37T3/128 

6 2-process Ref.[71 Proposed Method 
Error Km 

n en en n Estimate (2.3) n n 

0 -.500000 - .500000 - .500000 

1 .622531(-1) .622531(-1) .622531(-1) 
2 .325841(-1) 
2P .340712(-1) .340712(-1) .340712(-1) 
3 .174802(-1) 
3P -.168097(-2) .562214(-3) 
4 .885852(-2) .535944 2.15491 
4P -.468967(-3) .450433(-4) -.816331(-6) 
5 -.234397(-3) .513264 2.05450 
5P .594677(-7) .838173(-11) 
6 -.117177(-3) .500220 2.00088 
6P -.863344(-7) -.210378(-11) .231462(-20) .231557(-20) 
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TABLE 2 

f | a | m | K L | M N 

x sin([x-1]4) 1 4 | 3/4 1/16 -5/64 25/256 

62-process Ref.[7] Proposed Metrod 
n K E 

rro 
n n n Estimate (2.3) Kn mn 

0 - .500000 - .500000 - .500000 
1 -.333043 -.333043 -.333043 
2 -.237900 
2P -.111849 -.111849 -.111849 
3 -.829778(-1) 
3P -.154860(-1) .163380(-1) 
4 -.617533(-1) .700391 3.33769 
4P -.284075(-2) -.494979(-3) -.520123(-3) 
5 -.213006(-2) .743037 3.89160 
5P -.194741(-5) -.415324(-6) 
6 -.159726(-2) .750969 4.01556 
6P -.152028(-5) -.241102(-9) -.111822(-11) -.112351(-11) 

TABLE 3 

f | K L M N 

[exp(x-1)+1]/2 x-p(x) 1 1/2 1/4 1/12 1/48 

Proposed Method 
62process Ref.[71 ]-o P 

nc 
En 

| 
Estimate (2.3) Kn 

0 -.500000 - .500000 - .500000 
I -.196735 -.196735 -.196735 
2 -.892957(-1) 
2P -.303500(-1) -.303500(-1) -.303500(-1) 
3 -.149470(-1) 
3P -.250417(-2) -.749119(-3) 
4 -.741794(-2) .446848 
4P -.218535(-3) -.369864(-4) -.963383(-6) 
5 -.109255(-3) .492303 
5P -.462123(-7) -.408159(-11) 
6 -.546247(-4) .499813 
6P -.119348(-7) -.854588(-12) -.499176(-21) -.499178(-21) 

Since Newton's method requires the calculation of both f and f' to get p, the 
effective efficiency for the 82-process is really only 2' L/4- 1.189, and for Method [7] 
is (1.618)'/2 - 1.272. Similarly the proposed scheme with Newton's method has an 
effective efficiency of (1.839)1/2 - 1.356. 

b. The third example is for a direct application of the iteration xn+l = p(xn) of 
(1.1) to finding fixed point a = 1 of 

(3.2) ex2 

We can think of the problem as that of finding a root of the nonlinear function 
f = x - k. 
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Table 3 shows results for the proposed method: the actual error e n, the final error 
estimate from (2.3), and the approximation Kn to K (mn has no apparent signifi- 
cance in this case). Again, corresponding calculations for the 8 2-process and for the 
method of [7] are listed for comparison. 
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